The latest flexible manufacturing system (FMS) designed and created by Starrag is heading to China. A company active in the Chinese aviation industry annually machines 35,000 Inconel or titanium-forged turbine blades right through to completion via a fully automated process. The operator simply inserts the unmachined parts into the magazine and then removes the ready-to-install blades at the other end.
Flexible manufacturing systems are becoming a global trend. The aviation and energy industries in particular capitalize on the qualitative and economic benefits offered by automated series production. Starrag is a premium supplier for these highly demanding systems and has been designing and supplying FMSs for manufacturing turbine parts and structural components for aircraft for over twenty years. Around 60 automated multi-machine systems have been created during this time, allowing the company to accumulate a wealth of technological experience.
Dr Markus Ess, Head of Development at the Starrag site in Rorschacherberg explains: "In addition to our core competences in the fields of machine tools, tools, fixtures and the CAM system, we have an extensive amount of expertise in turn-key projects. In the FMS, we are supplementing our machining technology with automation components and all other necessary components so that we can provide the customer with a complete, reliable production system."
The benchmarks set by the latest plant are higher than ever before. The FMS ordered by this Chinese aviation company must be able to process 35,000 turbine blades via automated processes each year. This total volume comprises four different blade types in sizes ranging from 80 mm to 200 mm. These blades are known as "variable guide vanes" and they are positioned in the vertical part of the turbine so that they can be adjusted to allow the flow or thrust to be modified as needed. As the actual batch sizes for the four types equal around 200 parts, the FMS must ensure a high level of precision and the corresponding throughput while also exhibiting a high degree of flexibility.